Laser Diodes Enable Novel Optical Technologies: Report

by Ruth Seeley

As the power of laser diodes increases while the price per watt decreases, they are displacing both laser and non-laser technologies. IDTechEx’s recently published report “Laser Diodes & Direct Diode Lasers 2019-2029: Technologies, Markets & Forecasts” presents a comprehensive review of diode laser technologies, value chains, key player activities and global markets. 

Recent progress in material processing is highlighted using case studies. The report includes segmented 10-year market forecasts and technology roadmaps based on an extensive analysis of primary and secondary data, combined with careful consideration of market drivers and restraints.

Some of the highlights of the report include:

Evolution of Laser Diodes and Diode Bars

Technology advances have enabled lasers to progress from specialist technical instruments to a diverse range of markets. Laser diodes are the most widely available laser technology and are simple semiconductor devices. During the past three decades, the average power of laser diodes increased significantly, while their average price per watt decreased exponentially. Consequently, laser diodes are displacing some established laser and non-laser technologies, while enabling entirely novel optical technologies. Mature applications of laser diodes are data storage, data communication and the optical pumping of solid-state lasers. In contrast, material processing and optical sensing are examples of rapidly evolving market segments with many emerging applications.

The output power of a single laser diode can range from milliwatt to multi-watt levels. Power can be scaled up by combining single emitters into laser diode bars and stacks of bars, and a standard bar has a width of 1 cm. For decades, there was strong competition between companies to increase the output power of diode bars, and an exponential growth trend was observed. While commercial diode bar products usually offer power less than 200 W per diode bar at 1-micron wavelength, research and development (R&D) divisions of laser manufacturers have demonstrated continuous wave (CW) average power exceeding 1 kW per bar. An increase in diode bar power enabled new applications in material processing, but some emerging applications demand the enhancement of laser parameters like wavelength stability and device lifetime. Therefore, competing on power is no longer the priority for companies in this market. The ongoing evolution of diode laser technology includes the improvement of infrared beam quality for precision engineering and the development of novel visible light lasers for metal processing.

Power and Precision: Emerging Direct Diode Laser Technologies

Advances in semiconductor laser technology enable the development of direct diode lasers (DDLs), including high-power direct diode lasers (HPDDLs) that produce multi-kilowatt output power. DDLs combine numerous diode bars with beam shaping optics, control electronics and a cooling unit. Technology advances now enable DDLs to generate output power exceeding 20 kW in multi-mode systems and produce multi-kilowatt power at higher beam quality than before. Diode lasers coupled to active fiber converters produce 4-6 kW output power at an excellent beam quality of 4-6 mm mrad.

Dramatic improvements in beam quality now enable users to focus laser light to a small point, and this revealed DDLs as rapidly evolving tools for processing metal, plastic and composite materials. In applications like laser welding, which require high precision and deep penetration, DDLs can now compete with fiber lasers. While DDLs directly convert electricity to laser light, fiber lasers are based on rare-earth, metal-doped optical fibers, which must be optically pumped (energy input) via laser diodes or diode bars. The unit price of a DDL is significantly lower than a fiber laser for CW output power up to 1 kW. 

In 2018, the typical unit prices were $20,000 for a 1 kW HPDDL and $25,000 for a 1 kW fiber laser. The difference in price between DDLs and fiber lasers is larger at sub-kilowatt output power. Additionally, the wavelengths offered by DDLs are different to fiber lasers, which means that DDLs can process materials with matching absorption spectra more efficiently.

Consequently, DDLs and HPDDLs are emerging as major global trends in industrial manufacturing. In order to enhance their position in high-growth DDL/HPDDL markets, key player companies are making strategic acquisitions and investing into production capacity expansion. Overall, the technology advances outlined above provide excellent business growth opportunities. IDTechEx Research forecast the global market for laser diodes and direct diode lasers to reach a size of $14 billion by 2029, where direct diode lasers account for $2 billion.

Welding and 3D Printing Copper with Bright Blue Diode Lasers

A particularly important trend is the development of blue direct diode lasers for applications like welding and 3D printing copper. Blue laser light is faster and more efficient at processing metals that are poor absorbers of the 1-micron infrared radiation produced by most industrial laser systems. Blue laser diodes have in some instances doubled in efficiency and increased by an order of magnitude in output power since 2006. A key application is in 3D printing copper, where the high absorption of blue laser light by copper enables a fast process with reduced back reflections, which are serious challenges for conventional infrared lasers. A newly developed 3D printer can efficiently print objects using pure copper powder, while existing 3D printer technologies typically use copper alloys like the CuCr1Zr instead of pure copper.

IDTechEx Research expects the rapid adoption of blue DDLs in copper processing from 2019 onward, as more products are commercialized. 

The report is available here.

Source: IDTechEx 

Related Articles

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy